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LETTER TO THE EDITOR 

de Sitter gauge invariance and the geometry of the 
Einst ein-Cart an theory 

K S StelletS and P C West§ 
$ Department of Physics, Imperial College, London 
5 Department of Mathematics, King’s College, London 

Received 24 April 1979 

Abstract. A formulation of general relativity as a gauge theory of the de Sitter group 
SO(3.2) is used to analyse the geometrical structure of the Einstein-Cartan theory. The 
S0(3,2) symmetry must be spontaneously broken to the Lorentz group in order to 
reproduce the usual four-dimensional geometry of gravity. Special emphasis is placed upon 
the role of the Goldstone field of the symmetry breaking mechanism and also that of the 
original S0(3,2)  gauge fields. The latter are not directly identified with the gravitational 
vierbein and spin connection, but instead generate a kind of parallel transport known as 
development, which is the necessary construction to interpret the effects of space-time 
torsion and curvature. 

The formal similarities between Yang-Mills gauge theories and general relativity have 
received considerable attention since the papers of Utiyama (1956), Kibble (1961) and 
Sciama (1962); a recent review of the attempts to describe gravity as a gauge theory has 
been given by Hey1 et a1 (1976). A revival of interest in the connection between gravity 
and gauge theories has been stimulated by recent work in supergravity, which has been 
related to a gauge theory of the graded PoincarC (Chamseddine and West 1977) or 
graded de Sitter (MacDowell and Mansouri 1977) groups. The techniques from these 
two works have also been used in the analysis of O(2) extended supergravity (Townsend 
and van Nieuwenhuizen 1977) and in the construction of superconformal supergravity 
(Kaku eta1 1978). While Chamseddine and West (1977) and MacDowell and Mansouri 
(1977) did not give actions that were strictly invariant under the indicated groups, it is 
possible to obtain such invariance by the introduction of a constrained field. This was 
shown by West (1978) for the case of pure gravity in a formulation that is invariant 
under the group SP(4), which is locally isomorphic to the de Sitter group S0(3,2) .  

In this Letter we shall explain the geometrical significance of the formulation of 
gravity given by West (1978). The action given there is, in a new notation, 

(1) 

1, and the indices are raised and where the capital indices run from 1 to 5, E 

lowered with T~~ = (1, 1, 1, - 1, - 1). The R:’y” are the S0(3 ,2)  curvatures and yA is 
an S0(3 ,2)  five-vector which may be eliminated to give a non-polynomial action 
containing solely the gauge fields. 
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Since the field y A ( ~ )  is constrained to take its values in the surface y A y A  = - m-', 
the S0(3 ,2 )  symmetry of the theory is spontaneously broken in a way reminiscent of the 
nonlinear sigma model. There are no degrees of freedom associated with the field y A ,  
but it plays an important role in the geometrical structure of the theory. Since the 
S0(3 ,2 )  symmetry is spontaneously broken, the field y A  gives rise to the Goldstone 
field of the theory upon passage to a nonlinear realisation (Coleman et al1969, Callan et 
a1 1969, Isham 1969, Salam and Strathdee 1969, Volkov 1973) of the S0(3 ,2 )  
symmetry. The Goldstone field ( " ( x )  is defined by 

where g5 denotes the five-vector representation of S0(3 ,2) ,  the lower case italic indices 
run from 1 to 4, and Pa = mMas are the broken generators of the theory, scaled in the 
customary fashion by the inverse of the vacuum magnitude of the Higgs field. Equation 
(2) is the prototype for the passage to a nonlinearly transforming set of fields q ( x )  from 
a field q ( x )  transforming according to a linear irreducible reprsentation U of S0(3 ,2 ) :  

i ( x )  = U C ~ X P ( ~ S "  ( X  )Pa )I+(x 1. (3) 

The importance of nonlinear realisations for gravity derives from the fact that the 
nonlinearly transforming fields mix only according to their stability subgroup indices, so 
in this case the Lorentz indices of fields will be respected by the full S0(3 ,2 )  symmetry. 
Under the broken transformations generated by the Pa, the fields q ( x )  transform 
independently according to their Lorentz indices with the group element h1((, E )  E 
SO(3, l )  defined by 

exp( -id') exp( -i(P) = exp( -i('P)hl((, e). (4) 

The Lorentz group element hl((, E )  is a nonlinear function of ( and E whose exact 
expression can be worked out using the S0(3 ,2 )  commutation algebra. A formalism 
for such calculations has been presented in Keck (1975) and Zumino (1977). Thus, 
under a Pa gauge transformation with parameters e", ( " ( x )  transforms to ( " ' ( x )  as given 
by equation (4), and q ( x )  transforms to 

@ ( X I  = d h ( 5 , 4 l i ( x ) .  ( 5 )  

The theory of nonlinear realisations allows us to define the true vierbein and spin 
connection of the Einstein-Cartan theory by passing from the original S0(3 ,2)  gauge 
fields W ~ A B  to the redefined fields 5zb and PE according to 

$i&Eb(X)Mab - izwa(x)Pa 

= exp(ir(x)P)(a, + $ U z b ( X ) M a b  - ieE(x)P,) exp(- if(x)P) (6) 

where the Pa gauge fields have been scaled to give the vierbein the correct dimension 

(7) -1 
P w a = m  Owas.  
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The identification of the gravitational vierbein and spin connection with redefined 
fields using the theory of nonlinear realisations was suggested by Volkov and Soroka 
(1973) in connection with the spontaneous symmetry breaking of supersymmetry. 
Later suggestions were also made by Gursey and Marcildon (1978) and Chang and 
Mansouri (1978). Volkov and Soroka did not interpret the coset parameters cor- 
responding to the broken generators in the same way that we have, however. In their 
work, these coset parameters represented the points of space-time itself. In the present 
Letter, we have the Goldstone field l a ( x ) ,  which takes its values in an inrernal anti de 
Sitter space. The interpretation of the geometrical significance of this field is suggested 
by the fact that if E t  and G t b  are identified as the vierbein and spin connection, then the 
maximally symmetric solution to the field equations derived from equation (1) is an anti 
de Sitter space identical to the space that the l " ( x )  take their values in. This may be 
seen by writing the action (equation (1)) in terms of the redefined fields E: and &itb, with 
the result 

(8) - a b  -cd d X€abcd€ "vpTR N v R  pr I = l 4  
where the de Sitter curvatures I?$ are given by the same expressions as R$, but with Ft 
and G t b  in place of e t  and u : ~ .  The form (equation (8)) of the gravitational action is the 
same as was given by MacDowell and Mansouri (1977), but expressed here in terms of 
the barred fields to retain the full S0(3 ,2)  invariance. The action (equation (8)) may be 
expanded into three terms, which are the Gauss-Bonnet topological invariant, the 
Hilbert action and a cosmological constant. The cosmological constant is proportional 
to m4, so its value is determined by the strength of the symmetry breaking. 

Since the maximally symmetric solution to the equations derived from equation (8) 
may be identified with the space given by y A y A  = -m2, the natural interpretation of the 
Goldstone field l a ( x )  is as the coordinates of a point associated to x" in a local copy of 
the vacuum. This is reminiscent of the standard inertial frames of general relativity, and 
in fact the analogy can be carried out in complete detail. We shall see that the internal 
anti de Sitter space at each point x *  can be used to construct a local coordinate system in 
the vicinity of x". 

In order to explain more fully the geometrical role of the Goldstone field l a ( x )  and 
of the space in which it lies, we must direct our attention to the operation of parallel 
transport. In complete agreement with the usual situation in the Einstein-Cartan 
theory, the usual notion of parallel transport is generated by the covariant derivative 
D,, defined by 

B, = a, + & ; b ~ a b .  (9) 

The non-linear field Gzb transforms correctly to make this a covariant derivative when 
acting on non-linearly transforming fields such as Q ( x ) .  Fields with 'world' indices may 
be parallelly transported using the connection 

(10) 

where E A a  is the inverse of EaA. 
Under parallel transport with equation (9)) there is little indication of the role of the 

original S0(3 ,2)  invariance of the theory, for all the fields have Lorentz indices and the 
remaining invariance under the Pa transformations is automaticallly achieved through 
barring all the fields. The original linear S0(3 ,2)  gauge fields do still have an important 

r^,v=&(a,i?," +GEbEv b ) 
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role to play, however, in the process of development, which is defined by another 
differential operator A, that is given by 

(11) 

In equation (1 l), the elements kfab and Pa of the S 0 ( 3 , 2 )  Lie algebra are considered to 
be operators that act upon non-linear fields according to their transformation type. 
Thus, h f a b  operates linearly according to the Lorentz indices, but Pa gives rise to an 
infinitesimal transformation that is non-linear in la (x), as can be seen from equations 
(4) and ( 5 ) .  For example, 

1 ab  A,, = 8, + i iw , k i a b  - ieraPO. 

-i€"bva =[h1(( ,  €)-n];vb. (12) 

The operator A,, is covariant in the following sense: when (1 + dx'A,) is applied both to 
l a (x )  and to some vector field va (x )  to produce l;(x) and v: (x), then l:(x) and 

(x) transform using the same functions of [t and the transformation parameters as 
the functions of 5" given in equations (4) and ( 5 ) ,  keeping only up to first order terms in 
dx 

The process of development generated by A, may be understood by re-expressing 
the action of A, on va using the following: 

Awea = (6, + iPEPb) va. (13) 
The first term just generates ordinary parallel transport across space-time, as we have 
said. The second term generates parallel transport in the internal anti de Sitter space. 
More precisely, for an infinitesimal development a distance dx", the quantity v: that 
we have referred to above is the result of parallelly transporting v a ( x  + dx) to x"' using 
D,, and then parallelly transporting it in the internal space away from 5" (x) to the point 
l:. Note that the sign on the second term in equation (13) is different from equation 
(1 l),  as it must be to achieve this. The situation requires a clear understanding of the 
true role of the uierbein Pz(x). The uierbein is the matrix of a map between the tangent 
space to space-time at xc( and the tangent space to the internal anti de Sitter space at the 
point ["(x). Thus, development takes advantage of the possibility of moving to points 
other than l a ( x )  in the internal space associated to the point x". 

Development along finite curves in space-time gives rise to image curves in the 
internal space. Vector fields defined along the curves in space-time are mapped into 
image vector fields along the image curves. The identification of points in space-time 
with points in the internal space is not unique, however. The non-integrability of 
development may be investigated in the usual fashion by considering an infinitesimal 
closed curve in space-time and developing it and a vector situated at its starting point xo" 
into the internal space associated with the point xo". Keeping only up to terms of second 
order in the displacement (x, -xo"), the result of developing a vector va(xo)  around the 
curve is v;,,, (xo; xo), which is given by 

Vz(2) ( X O ;  X O )  - va (XO) = ;[&R ~ v ( x ~ ) M b c  - iR Ly(x,JPb] va (xo) x F  dx (14) 4 
Analogously to equation (13), this may be re-expressed as 

vt(z) (XO; XO)-  ~ " ( x o )  =$[$il?Fy(xo)M~ +il?:,(x~)Pb]v~(x~) xcI dx". (15) 

The second term in equation (15) shows that, after development around a closed 
curve, in order to return vs to its original value an internal parallel transport is 
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necessary. Thus the end of the image curve is not at the same point as its beginning, and 
so the torsion I?:,, indicates the gap in an image curve corresponding to an infinitesimal 
closed curve in space-time. The first term in equation (15) gives the rotation of v$ (xo ;  X O )  with respect to va(xO), exclusive of that induced by parallel transport across 
the gap in the image curve. This rotation is given by the difference between two terms, 
as may be seen by expanding l?$ : 

where is just the usual Lorentz curvature expressed in terms of &Eb.  The remainder 
of equation (16) is the negative of the Lorentz curvature tensor of anti de Sitter space. 
The de Sitter curvature I?$ is thus the difference between the usual curvature of 
space-time and the curvature of the internal space. This is as it should be, because 
development involves parallel transport both across space-time and within the internal 
space, in opposite directions: first in from x @  +dx” to x” in space-time, then out in the 
internal space from t “ ( x )  to [ G .  

The process of development is particularly simple when space-time is in its vacuum 
state, for then R:’y” = 0, and one can pick a gauge where U? = 0. Then the vierbein Zc 
and spin connection &Eb are entirely given by functions of l” (x)  and its derivatives. In 
this case, we also have A” =a,, so development of non-linear fields v‘ and the 
Goldstone field 5” involves doing nothing at all to the components of these fields. Thus, 
picking some point xg ,  the surrounding points of space-time may be associated with 
points in the internal space at xo’ by simply associating x” with the point {“(x). The 
internal space at x g  may therefore be considered as a map of the surrounding 
space-time. 

In general space-times, the identification of points in space-time with the points of 
the internal space at x i  cannot be done unambiguously. Thus it is necessary to decide 
upon some definite procedure to establish the mapping of space-time. The natural way 
to do this is to map along autoparallels in space-time passing through x:, satisfying 

dxP(t) dx“(t) - 0. 
d2x”(t) 

+r&(x(t))  - -- 
dt2 dt dt 

Autoparallels are mapped into geodesic image curves in the internal space at xo”. In this 
way, we can establish a local coordinate system in the vicinity of x:. If gauges are 
chosen for the Pa transformations such that [ “ ( x )  = 0, then this coordinate system will 
be a normal coordinate system, inheriting this property from the parametrisation 
(equation (2)) of the internal space at its origin. 

We have seen above that the internal anti de Sitter spaces are the analogues of the 
local inertial frames of the standard formulation of general relativity, when used to 
establish local coordinate systems using development. The process of development that 
we have derived is a purely group theoretic notion of a form of parallel transport of the 
Goldstone and vector fields. It has been given its name because it generates image 
curves and vector fields which can be shown to be identical to those obtained by a 
generalisation to our situation with internal anti de Sitter spaces of a purely geometric 
construction in differential geometry known as development into the flat affine tangent 
space of a differentiable manifold, as is discussed for example by Kobayashi and 
Nomizu (1963). Using it, we have achieved a full agreement of the Yang-Mills gauge 
theoretic and the geometrical aspects of the Einstein-Cartan theory. 



L210 Letter to the Editor 

The results presented in this Letter will be discussed in fuller detail in a separate 
publication. 

We would like to thank Dr C J Isham for many helpful discussions during the course of 
this work, especially on the more formal mathematical aspects. 
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